EAD Accuracy Metric¶
The ead_accuracy metric evaluates the accuracy of predicted EAD (Exposure at Default) values by comparing them to observed EAD values for defaulted accounts.
Metric Type: ead_accuracy
Accuracy Calculation¶
The accuracy is calculated as: 1 - |predicted_ead - observed_ead| / observed_ead
This metric only considers accounts that actually defaulted, comparing the predicted exposure amount to the actual exposure amount at the time of default.
Configuration Fields¶
Record-Level Data Format¶
For individual defaulted loan/account records:
collections:
ead_validation:
metrics:
- name:
- ead_model_accuracy
data_format: record
predicted_ead: predicted_exposure
actual_ead: actual_exposure
default: default_flag
segment:
- - product_type
metric_type: ead_accuracy
dataset: defaulted_accounts
Summary-Level Data Format¶
For pre-aggregated defaulted account data:
collections:
summary_ead:
metrics:
- name:
- aggregated_ead_accuracy
data_format: summary
predicted_ead: mean_predicted_ead
actual_ead: mean_actual_ead
defaults: default_count
segment:
- - risk_grade
metric_type: ead_accuracy
dataset: ead_summary
Required Fields by Format¶
Record-Level Required¶
name: Metric name(s)data_format: Must be "record"predicted_ead: predicted_ead column nameactual_ead: Actual EAD column namedefault: Default indicator column namedataset: Dataset reference
Summary-Level Required¶
name: Metric name(s)data_format: Must be "summary"predicted_ead: Mean predicted EAD column nameactual_ead: Mean actual EAD column namedefaults: Default count column namedataset: Dataset reference
Optional Fields¶
segment: List of column names for grouping
Output Columns¶
The metric produces the following output columns:
group_key: Segmentation group identifier (struct of segment values)defaults: Total number of defaults analyzedobserved_ead: Mean observed EAD valuepredicted_ead: Mean predicted EAD valueaccuracy: Calculated EAD accuracy score
Fan-out Examples¶
Multiple EAD Validations¶
collections:
ead_validation_suite:
metrics:
- name:
- overall_ead
- product_ead
- vintage_ead
segment:
- null
- - product_type
- - origination_year
data_format: record
predicted_ead: model_ead_prediction
actual_ead: realized_ead
default: default_indicator
metric_type: ead_accuracy
dataset: historical_defaults
This creates three EAD accuracy metrics:
- Overall EAD accuracy across all defaults
- EAD accuracy by product type
- EAD accuracy by origination vintage
Comparative Analysis¶
collections:
model_comparison:
metrics:
- name:
- model_v1_ead
- model_v2_ead
segment:
- null
- null
data_format: record
predicted_ead: v1_ead_pred
actual_ead: actual_ead
default: default_flag
metric_type: ead_accuracy
dataset: model_comparison_data
model_v2_ead:
metrics:
- name:
- model_v2_ead
data_format: record
predicted_ead: v2_ead_pred
actual_ead: actual_ead
default: default_flag
metric_type: ead_accuracy
dataset: model_comparison_data
Data Requirements¶
Record-Level Data¶
- One row per defaulted loan/account
- predicted_ead: positive numbers or None (negative values not allowed)
- Actual EAD: positive numbers or None (negative values not allowed)
- Default indicator: must be 1 (only defaulted accounts are analyzed)
Summary-Level Data¶
- One row per group/segment of defaulted accounts
- Mean predicted EAD: positive numbers or None (negative values not allowed)
- Mean actual EAD: positive numbers or None (negative values not allowed)
- Default counts: numeric values (any numeric value is allowed)
Important Notes¶
- Defaulted Accounts Only: This metric only analyzes accounts that actually defaulted
- Positive EAD Values: EAD values (predicted and actual) must be positive numbers or None - negative values are not allowed
- Currency Consistency: Ensure predicted and actual EAD values are in the same currency/units
- Data Quality: Remove outliers or data quality issues that might skew accuracy calculations