Default Accuracy Metric¶
The default_accuracy metric evaluates the accuracy of predicted default probabilities by comparing them to observed default rates.
Metric Type: default_accuracy
Accuracy Calculation¶
The accuracy is calculated as: pd / odr (expected to observed ratio)
Where:
- pd = Predicted Default probability (mean)
- odr = Observed Default Rate (actual defaults / total volume)
Configuration Fields¶
Record-Level Data Format¶
For individual loan/account records:
collections:
accuracy_check:
metrics:
- name:
- portfolio_accuracy
data_format: record
prob_def: predicted_probability
default: default_flag
segment:
- - product_type
metric_type: default_accuracy
dataset: loan_portfolio
Summary-Level Data Format¶
For pre-aggregated data:
collections:
summary_accuracy:
metrics:
- name:
- aggregated_accuracy
data_format: summary
mean_pd: avg_probability
defaults: default_count
volume: total_count
segment:
- - risk_grade
metric_type: default_accuracy
dataset: risk_summary
Required Fields by Format¶
Record-Level Required¶
name: Metric name(s)data_format: Must be "record"prob_def: Probability column namedefault: Default indicator column namedataset: Dataset reference
Summary-Level Required¶
name: Metric name(s)data_format: Must be "summary"mean_pd: Mean probability column namedefaults: Default count column namevolume: Volume count column namedataset: Dataset reference
Optional Fields¶
segment: List of column names for grouping
Output Columns¶
The metric produces the following output columns:
group_key: Segmentation group identifier (struct of segment values)volume: Total number of observationsdefaults: Total number of defaultsodr: Observed Default Rate (Defaults/Volume)pd: Mean Predicted Default probabilityaccuracy: Calculated accuracy score
Fan-out Examples¶
Multiple Accuracy Metrics¶
collections:
portfolio_accuracy:
metrics:
- name:
- total_accuracy
- product_accuracy
- region_accuracy
segment:
- null
- - product_type
- - region
data_format: record
prob_def: model_score
default: default_indicator
metric_type: default_accuracy
dataset: loan_data
This creates three accuracy metrics:
- Overall portfolio accuracy
- Accuracy by product type
- Accuracy by region
Mixed Data Formats¶
collections:
detailed_accuracy:
metrics:
- name:
- record_accuracy
data_format: record
prob_def: probability
default: default
metric_type: default_accuracy
dataset: detailed_data
summary_accuracy:
metrics:
- name:
- summary_accuracy
data_format: summary
mean_pd: mean_prob
defaults: def_count
volume: vol_count
metric_type: default_accuracy
dataset: summary_data
Data Requirements¶
Record-Level Data¶
- One row per loan/account
- Probability column: numeric values between 0.0 and 1.0
- Default column: binary values (0/1 or boolean)
Summary-Level Data¶
- One row per group/segment
- Mean probability: numeric values between 0.0 and 1.0
- Default counts: positive numbers or None (negative values not allowed)
- Volume counts: positive numbers or None (negative values not allowed)