AUC (Area Under Curve) Metric¶
The auc metric calculates the Area Under the ROC Curve, measuring a model's ability to discriminate between defaults and non-defaults.
Metric Type: auc
AUC Calculation¶
AUC measures discrimination power by calculating the area under the Receiver Operating Characteristic (ROC) curve:
- 1.0: Perfect discrimination
- 0.5: No discrimination (random)
- 0.0: Perfect inverse discrimination
Configuration Fields¶
Record-Level Data Format¶
For individual loan/account records:
metrics:
discrimination_analysis:
metric_type: "auc"
config:
name: ["model_discrimination"]
data_format: "record_level"
prob_def: "model_score" # Column with predicted probabilities (0.0-1.0)
default: "default_flag" # Column with default indicators (0/1 or boolean)
segment: [["product_type"]] # Optional: segmentation columns
dataset: "loan_portfolio"
Summary-Level Data Format¶
For pre-aggregated risk-ordered data:
metrics:
summary_discrimination:
metric_type: "auc"
config:
name: ["risk_grade_auc"]
data_format: "summary_level"
mean_pd: "avg_probability" # Column with mean probabilities (for ordering)
defaults: "default_count" # Column with default counts
volume: "total_count" # Column with total observation counts
segment: [["model_version"]] # Optional: segmentation columns
dataset: "risk_grade_summary"
Required Fields by Format¶
Record-Level Required¶
name: Metric name(s)data_format: Must be "record_level"prob_def: Probability column namedefault: Default indicator column namedataset: Dataset reference
Summary-Level Required¶
name: Metric name(s)data_format: Must be "summary_level"mean_pd: Mean probability column name (used for risk ordering)defaults: Default count column namevolume: Volume count column namedataset: Dataset reference
Optional Fields¶
segment: List of column names for grouping
Output Columns¶
The metric produces the following output columns:
group_key: Segmentation group identifier (struct of segment values)volume: Total number of observationsdefaults: Total number of defaultsodr: Observed Default Rate (Defaults/Volume)pd: Mean Predicted Default probabilityauc: Calculated AUC score (0.0 to 1.0)
Fan-out Examples¶
Multiple Discrimination Tests¶
metrics:
auc_analysis:
metric_type: "auc"
config:
name: ["portfolio_auc", "product_auc", "region_auc", "vintage_auc"]
segment: [null, ["product_type"], ["region"], ["origination_year"]]
data_format: "record_level"
prob_def: "risk_score"
default: "default_indicator"
dataset: "model_validation_data"
This creates four AUC metrics:
- Overall portfolio discrimination
- Discrimination by product type
- Discrimination by region
- Discrimination by origination vintage
Model Comparison¶
metrics:
model_auc_comparison:
metric_type: "auc"
config:
name: ["champion_model", "challenger_model"]
segment: [null, null]
data_format: "record_level"
prob_def: "champion_score" # Note: Would need separate configs for different score columns
default: "default_flag"
dataset: "ab_test_data"
# Separate config for challenger model
challenger_auc:
metric_type: "auc"
config:
name: ["challenger_model_score"]
data_format: "record_level"
prob_def: "challenger_score"
default: "default_flag"
dataset: "ab_test_data"
Summary-Level Analysis¶
metrics:
risk_grade_analysis:
metric_type: "auc"
config:
name: ["overall_grade_auc", "product_grade_auc"]
segment: [null, ["product_type"]]
data_format: "summary_level"
mean_pd: "grade_mean_pd"
defaults: "grade_defaults"
volume: "grade_volume"
dataset: "risk_grade_stats"
Data Requirements¶
Record-Level Data¶
- One row per loan/account
- Probability column: numeric values between 0.0 and 1.0
- Default column: binary values (0/1 or boolean)
- Sufficient data points for meaningful AUC calculation (minimum ~20 observations recommended)
Summary-Level Data¶
- One row per risk grade or aggregated group
- Data should be ordered by risk (mean_pd column used for ordering)
- Mean probabilities: numeric values between 0.0 and 1.0
- Default counts: positive numbers or None (negative values not allowed)
- Volume counts: positive numbers or None (negative values not allowed)
- At least 2 risk grades with both defaults and non-defaults
AUC Interpretation¶
- AUC > 0.8: Excellent discrimination
- AUC > 0.7: Good discrimination
- AUC > 0.6: Acceptable discrimination
- AUC ≤ 0.6: Poor discrimination
- AUC = 0.5: No discrimination (random model)
Important Notes¶
- Data Quality: Remove accounts with missing or invalid probability scores
- Sample Size: Larger samples provide more reliable AUC estimates
- Population Stability: AUC can vary across different populations or time periods
- Risk Ordering: For summary-level data, ensure groups are properly risk-ordered